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Customizing = 
forking

Every sufficiently 
complex renderer 

contains an ad-hoc 
version of React

Don't look inside
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• 3D house/car configurator 

• Boutique data visualization 

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

... can you build it?"

"Yes, I can …

But GPU will take 
N weeks/months/years

…and you won't 
be able to maintain it"

Why not?
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• Incrementalism

• Graphics vs Web

• What went wrong with GPUs

• Live run-time

• Use.GPU components

This Talk

Use.GPU

LiveWebGPU

Browser

Completely change the way I think about code
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Live = alt-React

• Incremental 
Avoid redundant recomputation

• Reactive 
Dispatch and data flow is implicit and 1-way

• Declarative 
Side-effects are auto-mounted and disposed

React did something very interesting

Until you build 
Excel or Figma in React, 

you don't understand React.

I teach devs React

React clone
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Extend React to return 
data back to </Parent> 















Gather canvas 
event handlers and draws 



Gather canvas 
event handlers and draws 

Lambdas in flat 
tree order 



Gather canvas 
event handlers and draws 

Makes most 
canvas libs obsolete 

Lambdas in flat 
tree order 
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Inspector = 
React in Live 

in React

Local undo/redo 
+ Multiplayer ?

= Any value can 
change any time

This is why you 
should know React

Inspect all 
state 
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So just do the same 
for WebGPU?

Looks just like React
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Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

• Small teams

• Continuous delivery

• Compatibility

Two completely different worlds

Web

Monolithic projects Composition and reuse
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Graphics

"How do I draw a f😿ing line"

Web

I get a 
black screen 

Where is the 

debugger?

There is no debugger

And no printf()
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Applications 

• Multiplayer  

• 2D and 3D content editors 

• 2-3 year project turnover 

• Continuous bugfixes 

• Decades of legacy cruft 

• Only bearable with extra tooling

Web

Applications 

• Multiplayer 

• 2D and 3D content editors 

• 2-3 year project turnover  

• Continuous bugfixes 

• Decades of legacy cruft 

• Only bearable with extra tooling

Install node and npm

Make a 

package.json
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Graphics Web

WebGPU 
is kinda 

shit

Yeah, 
browsers 
are kinda 

shit

Vulkan 
is worse

So is our 
back-end

🍻
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Immediate Mode

• Write all the code to produce 1 frame

 Very simple

Doesn't scale

• Call it again with new input

O(N) is fast when N < … ?

You can't beat O(N) 
if every input must be used
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Retained Mode

"How do I call a f😿ing function"

fn ( a, b, c, d )

On GPU?

• Allocate GPU memory

• Upload data

• Compile shader

• Dispatch

• Await
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fn

a 
b 
c 
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ

…

Threads (N > 1,000,000)

Memory bandwidth is the main bottleneck
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Pre-process and 
bake data

Hand-tune performance
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Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

Very Retained?

• Re-run subtrees selectively

Turing complete!
Immutable 

data

!
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Data flows from a source into components
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<App>

= Functions declare child 
components at run-time

Tree knits itself together 
at runtime

return (!<> 
  <Red !/> 
  <Orange> 
    <Green !/> 
    <Green foo={…} !/> 
  !</Orange> 
  <Purple bar={…} !/> 
  <Blue !/> 
!!</>)

JSXreturn [ 
  {fn: Red}, 
  {fn: Orange, args: [{… 
    {fn: Green}, 
    {fn: Green, args: […]}, 
  …}]}, 
  {fn: Purple, args: […]}, 
  {fn: Blue}, 
]

Read as

The calling convention is 
a recursive data structure
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Tree re-knits itself together 
at runtime

The deeper in the tree 
the more frequently it changes

Web / React

Memoize components to avoid 
updating slow sub-trees
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App structure is also 
page structure

Reconciling

Contexts allow 
you to make 'skip' links

It's a directed graph with a tree for a spine
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Live drives a tree just like the first But they don't have to match

There is no HTML

useMemo(…) 
useState(…) 

useCallback(…) 
useContext(…)

Only hooks
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How to return data without 
breaking one-way data flow?
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Incremental version of await 

Ugly continuation passing style needed 
because no rewindable generators

return gather( 
  children, 
  (values: T[]) !=> … 
)
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Everything is rewindable
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= optimize away the no-no-op

Same instance or different instance?
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Incremental effect 
systems are 

virtual reified silicon
Should this be a language?
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Memoize it using the  
patterns of Live

Make it an interactive app 
using Live hooks

Go all the way
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WebGPU Canvas
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Compute Shaders
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Camera Controls

Render Target

Forward Renderer

PBR Spheres

Or <DeferredRenderer>
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Tone Map

Render Passes
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GPU Dispatch

HTML UI





@use-gpu/voxel











Entirely new pipeline
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React in Live 
in React in Live Composition and reuse
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"How do I compose shaders?"@use-gpu/shader

Shader linker with 
module system in WGSL

Shader imports 
in TypeScript

Bind args by handle, 
reference or lambda

array[i] @link fn getValue(i)
Turn inputs into getters

Closures
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"How do I compose shaders?"@use-gpu/shader

So much boilerplate

All at run-time
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"How do I compose shaders?"@use-gpu/shader

Inspect generated 
shader + bindings
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Lighting prototype

printf(…) rays

<LineLayer> 
<PointLayer>

@link fn emitLine(…) 
@link fn emitPoint(…)







Level viewer 
for Dark Engine 

games
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But Use.GPU is a what if

Vertical 
Slice

Because the GPU API 
is in the way

ComponentsComponents

GPGPU = Dark Souls Industry is in denial

Only 4 
equipment slots

Use.GPU works* today

Multi-threading 
in browsers 
also sucks

*WebGPU support
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Finite and semi-static stack trace 
of everything that happened

Continuations are fences 
to prevent out-of-order evaluation

The app structure is also a 
data dependency graph

Hierarchy of change 
ordered by granularity

DSL for the target data structure

Your entire app 

acts like one big main() function

CPU code acts like a JITed GPU

Incremental Effects

CPU code acts like immediate mode
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LLM acts like a JITed world

Words

A language is an effect system 
that orders information by how often context changes

Finite and semi-static log 
of everything that happened

Sentences are fences 
to prevent out-of-order evaluation

The story structure is also a 
data dependency graph

Hierarchy of change 
ordered by granularity

DSL for the target world

Your entire story 

acts like one big main() function

Zipf's Law 2.0
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