
Steven Wittens

Use.GPU
An Incremental Effect System
For Declarative/Reactive 3D Graphics

Who am I?

Who am I?

Who am I?
That guy with
that website
with that
header

Graphics?

Graphics?

• Who has the prettiest pixels?

Graphics?

• Who has the prettiest pixels?

• Which renderer runs fastest??

Graphics?

• Who has the prettiest pixels?

• Which renderer runs fastest??

• How many triangles???

Graphics?

• Who has the prettiest pixels?

• Which renderer runs fastest??

• How many triangles???

That's not what this
talk is about

Graphics?

• Who has the prettiest pixels?

• Which renderer runs fastest??

• How many triangles???

That's not what this
talk is about

Use.GPU

The most versatile pixels?

Client: "We want a ..."

CAD app

* not affiliated

CAD app

* not affiliated

CAD app

The permutation
problem

* not affiliated

CAD app

The permutation
problem

Every combination
hand-baked and coded

* not affiliated

CAD app

The permutation
problem

Every combination
hand-baked and coded

* not affiliated

Light is 'painted on'

CAD app

CAD app

CAD app

Customizing =
forking

CAD app

Customizing =
forking

Don't look inside

CAD app

Customizing =
forking

Every sufficiently
complex renderer

contains an ad-hoc
version of React

Don't look inside

2D/3D vector graphics
on GPU

2D/3D vector graphics
on GPU

2D/3D vector graphics
on GPU

"We want a ...

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

"We want a ...

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

... can you build it?"

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

... can you build it?"

"Yes, I can …

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

... can you build it?"

"Yes, I can …

But GPU will take
N weeks/months/years

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

... can you build it?"

"Yes, I can …

But GPU will take
N weeks/months/years

…and you won't
be able to maintain it"

• 3D house/car configurator

• Boutique data visualization

• GPU-driven CAD app

• With transparency and global illumination

"We want a ...

... can you build it?"

"Yes, I can …

But GPU will take
N weeks/months/years

…and you won't
be able to maintain it"

Why not?

This Talk

This Talk

Use.GPU

This Talk

Use.GPU

WebGPU

This Talk

Use.GPU

LiveWebGPU

This Talk

Use.GPU

LiveWebGPU

Browser

• Incrementalism

This Talk

Use.GPU

LiveWebGPU

Browser

• Incrementalism

• Graphics vs Web

This Talk

Use.GPU

LiveWebGPU

Browser

• Incrementalism

• Graphics vs Web

• What went wrong with GPUs

This Talk

Use.GPU

LiveWebGPU

Browser

• Incrementalism

• Graphics vs Web

• What went wrong with GPUs

• Live run-time

This Talk

Use.GPU

LiveWebGPU

Browser

• Incrementalism

• Graphics vs Web

• What went wrong with GPUs

• Live run-time

• Use.GPU components

This Talk

Use.GPU

LiveWebGPU

Browser

• Incrementalism

• Graphics vs Web

• What went wrong with GPUs

• Live run-time

• Use.GPU components

This Talk

Use.GPU

LiveWebGPU

Browser

Completely change the way I think about code

Live = alt-React

Live = alt-React
React clone

Live = alt-React

• Incremental
Avoid redundant recomputation

React clone

Live = alt-React

• Incremental
Avoid redundant recomputation

• Reactive
Dispatch and data flow is implicit and 1-way

React clone

Live = alt-React

• Incremental
Avoid redundant recomputation

• Reactive
Dispatch and data flow is implicit and 1-way

• Declarative
Side-effects are auto-mounted and disposed

React clone

Live = alt-React

• Incremental
Avoid redundant recomputation

• Reactive
Dispatch and data flow is implicit and 1-way

• Declarative
Side-effects are auto-mounted and disposed

React did something very interesting

React clone

Live = alt-React

• Incremental
Avoid redundant recomputation

• Reactive
Dispatch and data flow is implicit and 1-way

• Declarative
Side-effects are auto-mounted and disposed

React did something very interesting

I teach devs React

React clone

Live = alt-React

• Incremental
Avoid redundant recomputation

• Reactive
Dispatch and data flow is implicit and 1-way

• Declarative
Side-effects are auto-mounted and disposed

React did something very interesting

Until you build
Excel or Figma in React,

you don't understand React.

I teach devs React

React clone

React HTML

React HTML
Live CPU

Canvas

React HTML

React HTML

This just works

React HTML

This just works

React ↔ Live

Extend React to return
data back to </Parent>

Gather canvas
event handlers and draws

Gather canvas
event handlers and draws

Lambdas in flat
tree order

Gather canvas
event handlers and draws

Makes most
canvas libs obsolete

Lambdas in flat
tree order

Inspect all
state

Inspect all
state

Local undo/redo
+ Multiplayer ?

Inspect all
state

Local undo/redo
+ Multiplayer ?

= Any value can
change any time

Inspect all
state

Local undo/redo
+ Multiplayer ?

= Any value can
change any time

This is why you
should know React

Inspect all
state

Inspector =
React in Live

in React

Local undo/redo
+ Multiplayer ?

= Any value can
change any time

This is why you
should know React

Inspect all
state

Looks just like React

Looks just like React

Looks just like React

So just do the same
for WebGPU?

Looks just like React

Graphics vs Web

Graphics Web

Graphics

Driven by

Web

Graphics

Driven by

• AAA video games

Web

Graphics

Driven by

• AAA video games

• Industrial CAD

Web

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

Web

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

Web

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Web

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

• Small teams

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

• Small teams

• Continuous delivery

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

• Small teams

• Continuous delivery

• Compatibility

Web

Monolithic projects

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

• Small teams

• Continuous delivery

• Compatibility

Web

Monolithic projects Composition and reuse

Graphics

Driven by

• AAA video games

• Industrial CAD

• Large teams

• Offline delivery

• Rendering performance

Driven by

• SaaS companies

• Browsers & Open Source

• Small teams

• Continuous delivery

• Compatibility

Two completely different worlds

Web

Monolithic projects Composition and reuse

"How do I draw a f😿ing line"

WebGraphics

"How do I draw a f😿ing line"

Use canvas

WebGraphics

"How do I draw a f😿ing line"

Use canvas

context.lineWidth = 5
context.moveTo(…)
context.lineTo(…)
context.stroke()

WebGraphics

Graphics

"How do I draw a f😿ing line"

Web

Graphics

"How do I draw a f😿ing line"
Make a

render target

Web

What's a

render target?

Graphics

"How do I draw a f😿ing line"
Make a

render target

Web

What's a

render target?

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

What's a

render target?

But I want
to draw lines

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

What's a

render target?

But I want
to draw lines

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

Learn a

shader language

What's a

render target?

But I want
to draw lines

Which one?

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

Learn a

shader language

What's a

render target?

But I want
to draw lines

Which one?

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

Learn a

shader language
Compile a

vertex/fragment
shader…

What's a

render target?

But I want
to draw lines

Which one?

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

Learn a

shader language
Compile a

vertex/fragment
shader…

Build a

pipeline with

descriptors

What's a

render target?

But I want
to draw lines

Which one?

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

Learn a

shader language
Compile a

vertex/fragment
shader…

Build a

pipeline with

descriptors
...and make a

render loop
to dispatch it

What's a

render target?

But I want
to draw lines

Which one?

Graphics

"How do I draw a f😿ing line"
Make a

render target Fill a

vertexBuffer
with triangles

Web

Learn a

shader language
Compile a

vertex/fragment
shader…

Build a

pipeline with

descriptors
...and make a

render loop
to dispatch it

...

Graphics

"How do I draw a f😿ing line"

Web

Graphics

"How do I draw a f😿ing line"

Web

I get a
black screen

Graphics

"How do I draw a f😿ing line"

Web

I get a
black screen

Where is the

debugger?

Graphics

"How do I draw a f😿ing line"

Web

I get a
black screen

Where is the

debugger?

There is no debugger

Graphics

"How do I draw a f😿ing line"

Web

I get a
black screen

Where is the

debugger?

There is no debugger

And no printf()

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Install node and npm

Graphics

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Web

Applications

• Multiplayer

• 2D and 3D content editors

• 2-3 year project turnover

• Continuous bugfixes

• Decades of legacy cruft

• Only bearable with extra tooling

Install node and npm

Make a

package.json

Graphics Web

🍻

Graphics Web

WebGPU
is kinda

shit

🍻

Graphics Web

WebGPU
is kinda

shit

Yeah,
browsers
are kinda

shit

🍻

Graphics Web

WebGPU
is kinda

shit

Yeah,
browsers
are kinda

shit

Vulkan
is worse

🍻

Graphics Web

WebGPU
is kinda

shit

Yeah,
browsers
are kinda

shit

Vulkan
is worse

So is our
back-end

🍻

What went wrong
with GPUs

Immediate Mode

Immediate Mode

context.lineWidth = 5
context.moveTo(…)
context.lineTo(…)
context.stroke()

• Write all the code to produce 1 frame

Immediate Mode

context.lineWidth = 5
context.moveTo(…)
context.lineTo(…)
context.stroke()

• Write all the code to produce 1 frame

• Write all the code to produce 1 frame

• Call it again with new input

Immediate Mode

context.lineWidth = 5
context.moveTo(…)
context.lineTo(…)
context.stroke()

• Write all the code to produce 1 frame

• Call it again with new input

Immediate Mode

context.lineWidth = 5
context.moveTo(…)
context.lineTo(…)
context.stroke()

Immediate Mode

• Write all the code to produce 1 frame

• Call it again with new input

Immediate Mode

• Write all the code to produce 1 frame

 Very simple

• Call it again with new input

Immediate Mode

• Write all the code to produce 1 frame

 Very simple

Doesn't scale

• Call it again with new input

Immediate Mode

• Write all the code to produce 1 frame

 Very simple

Doesn't scale

• Call it again with new input
You can't beat O(N)

if every input must be used

Immediate Mode

• Write all the code to produce 1 frame

 Very simple

Doesn't scale

• Call it again with new input

O(N) is fast when N < … ?

You can't beat O(N)
if every input must be used

Retained Mode On GPU?

Retained Mode

fn (a, b, c, d)

On GPU?

Retained Mode

fn (a, b, c, d)

On GPU?

• Allocate GPU memory

Retained Mode

fn (a, b, c, d)

On GPU?

• Allocate GPU memory

• Upload data

Retained Mode

fn (a, b, c, d)

On GPU?

• Allocate GPU memory

• Upload data

• Compile shader

Retained Mode

fn (a, b, c, d)

On GPU?

• Allocate GPU memory

• Upload data

• Compile shader

• Dispatch

Retained Mode

fn (a, b, c, d)

On GPU?

• Allocate GPU memory

• Upload data

• Compile shader

• Dispatch

• Await

Retained Mode

"How do I call a f😿ing function"

fn (a, b, c, d)

On GPU?

• Allocate GPU memory

• Upload data

• Compile shader

• Dispatch

• Await

Shader Dispatch

fn (a, b, c, d)

fn

a
b
c
d

Shader Dispatch

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9 …

Threads (N > 1,000,000)

Shader Dispatch

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ

…

Threads (N > 1,000,000)

Shader Dispatch

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ

…

Threads (N > 1,000,000)

Memory bandwidth is the main bottleneck

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Repeat 0 1 2 3 4 0 1 2 3 4

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Lookup 0 1 1 1 1 2 2 2 2 2

Repeat 0 1 2 3 4 0 1 2 3 4

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

Repeat 0 1 2 3 4 0 1 2 3 4

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

0 1 2 3 4 0 1 2 3 4 Repeat

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

[i / n]

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

0 1 2 3 4 0 1 2 3 4 Repeat

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

+ Storage bigArray[randomAccess]

[i / n]

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

0 1 2 3 4 0 1 2 3 4 Repeat

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

+ Storage bigArray[randomAccess]

[i / n]

 Legacy Cruft!

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

0 1 2 3 4 0 1 2 3 4 Repeat

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

[i / n]

 Legacy Cruft!

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

0 1 2 3 4 0 1 2 3 4 Repeat

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

 + Restrictions on control flow and grouping 🫠

[i / n]

 Legacy Cruft!

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

0 1 2 3 4 0 1 2 3 4 Repeat

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

 + Restrictions on control flow and grouping 🫠

[i / n]

Problem #1

 Legacy Cruft!

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Repeat 0 1 2 3 4 0 1 2 3 4

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

 + Restrictions on control flow and grouping 🫠

[i / n]

Problem #1

Spread Policies

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Repeat 0 1 2 3 4 0 1 2 3 4

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

 + Restrictions on control flow and grouping 🫠

[i / n]

Problem #1

Spread Policies

Batch everything

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Repeat 0 1 2 3 4 0 1 2 3 4

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

 + Restrictions on control flow and grouping 🫠

[i / n]

Problem #1

Spread Policies

Batch everything

Ok

fn (a, b, c, d)

fn

a
b
c
d

0 1 2 3 4 5 6 7 8 9

3 4 1 3 2 5 7 8 2 3

XYZ

…

Threads (N > 1,000,000)

1 to 1

Repeat 0 1 2 3 4 0 1 2 3 4

Constant

Lookup 0 1 1 1 1 2 2 2 2 2

 Vertex array[i]

 Instanced array[i % n]

 Indexed array[lookup[i]]

Uniform array[0]

Completely different types and APIs for each on both CPU and GPU 🤬

+ Storage bigArray[randomAccess]

 + Restrictions on control flow and grouping 🫠

[i / n]

Problem #1

Spread Policies

Batch everything

No, not like that

Ok

Pipeline Dispatch

fn (input: Texture, output: Texture)

Pipeline Dispatch

fn (input: Texture, output: Texture)

Pipeline Dispatch

Map every pixel 1-to-1

fn (input: Texture, output: Texture)

Pipeline Dispatch

Map every pixel 1-to-1 No spread

fn (input: Texture, output: Texture)

Pipeline Dispatch

fn (input: Texture, output: Texture)

Resource Binding

Pipeline Dispatch

fn (input: Texture, output: Texture)

Resource Binding

Binding #0

Pipeline Dispatch

fn (input: Texture, output: Texture)

Resource Binding

Bind Group 0

Binding #0

Pipeline Dispatch

fn (input: Texture, output: Target)

Resource Binding

Bind Group 0

Binding #0

Pipeline Dispatch

fn (input: Texture, output: Target)

Resource Binding

Bind Group 0

Binding #0

Color Attachment

Pipeline Dispatch

fn (input: Texture, output: Target)

Resource Binding

Bind Group 0

Binding #0

Color Attachment

Render Pass

Pipeline Dispatch

fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

fn (input: Texture, output: Target)fn (input: Texture, output: Target)

Color State

fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

fn (input: Texture, vertices: T[], output: Target)fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Color State

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

Pipeline

fn (input: Texture, vertices: T[], output: Target)fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Color State

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

Pipeline

Vertex Shader

fn (input: Texture, vertices: T[], output: Target)fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Color State

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

Pipeline

Vertex Shader

Fragment Shader

fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Color State

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

Pipeline

Vertex Shader

Fragment Shader

fn (input: Texture, output: Target)fn (input: Texture, vertices: T[], output: Target)

Color State

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

Pipeline

Vertex Shader

Fragment Shader

Vertex Buffer

fn (input: Texture, vertices: T[], output: Target)

Bind Group 1

Sampler Binding

Binding #1

Bind Group 0

Resource Binding

Binding #0

Color Attachment

Render Pass

Pipeline

Vertex Shader

Fragment Shader

Vertex Buffer Color State

fn (input: Texture, vertices: T[], output: Target)

Command
Encoder

(Shader) => (Pipeline)
=> (Targets, Uniforms, Vertices)

Command
Encoder

Command
Encoder

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Targets, Uniforms, Vertices)

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Targets, Uniforms, Vertices)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

"How do I call a f😿ing function"

Command
Encoder

Command
Encoder

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Targets, Uniforms, Vertices)

Command
Encoder

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Targets, Uniforms, Vertices)

The calling convention is
a big nested data structure

Command
Encoder

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Targets, Uniforms, Vertices)

The calling convention is
a big nested data structure

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

Command
Encoder

The calling convention is
a big nested data structure

(*) Simplification
Reality is worse

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

Command
Encoder

The calling convention is
a big nested data structure

(*) Simplification
Reality is worse

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

Problem #2

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Everything set up
and grouped ahead of time

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Inner loops change state
more granularly
than outer loops

Everything set up
and grouped ahead of time

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Inner loops change state
more granularly
than outer loops

Everything set up
and grouped ahead of time

API is over-optimized
for 1 way of doing

retained mode 3D graphics

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

4 bind groups
max

; setUniforms(…)

; setUniforms(…)

; setUniforms(…)

Why???

Inner loops change state
more granularly
than outer loops

Everything set up
and grouped ahead of time

API is over-optimized
for 1 way of doing

retained mode 3D graphics

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

4 bind groups
max

; setUniforms(…)

; setUniforms(…)

; setUniforms(…)

Why???

Inner loops change state
more granularly
than outer loops

Everything set up
and grouped ahead of time

API is over-optimized
for 1 way of doing

retained mode 3D graphics

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

But I want
to compose

functions

Why???

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

Why???

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Big issue with the setup

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

If the size of the data
changes, you need

new storage and upload

Why???

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Big issue with the setup

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

If the size of the data
changes, you need

new storage and upload

Why???

If the type of the data
changes, you need

new everything

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Big issue with the setup

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why??? (Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Track all the resources
and cache them

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Track all the resources
and cache them

Deal with async

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Track all the resources
and cache them

Deal with async

Pack all your data
in binary arrays

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Track all the resources
and cache them

Deal with async

Pack all your data
in binary arrays

But I want
to draw lines

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

Why??? (Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Pre-process and
bake data

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Pre-process and
bake data

Hand-tune performance

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Why???

Pre-process and
bake data

Hand-tune performance

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Fork your tech stack

Why???

Pre-process and
bake data

Hand-tune performance

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Fork your tech stack

Fix all the new bugs

Why???

Pre-process and
bake data

Hand-tune performance

(Shader<T, U, V>) => (Pipeline<S, T, U, V>)
=> (Vertices, Uniforms, Targets)

(Shader<T, U, V>) & (Pipeline<S, T, U, V>)
& (Targets & Uniforms & Vertices)

• A classic video game renderer:

for (purple of targets)

setTarget(purple)

for (orange of pipelines[purple])

setPipeline(orange)

for (blue of materials[orange])

setUniforms(blue)

for (red of objects[blue])

setVertices(red)

draw(!!...)

Fork your tech stack

Fix all the new bugs

But I don't
have time

Spread Policies
Problem #1

Spread Policies
Problem #1

Pipeline Dispatch
Problem #2

Spread Policies
Problem #1

Pipeline Dispatch
Problem #2

Uber-shaders

Spread Policies
Problem #1

Pipeline Dispatch
Problem #2

Uber-shaders

Meshlets

Spread Policies
Problem #1

Pipeline Dispatch
Problem #2

Uber-shaders

Meshlets
Nanite

Spread Policies
Problem #1

Pipeline Dispatch
Problem #2

Uber-shaders

Meshlets
Nanite

Line or GTFO

An atlas is just a
spicy memory allocator

An atlas is just a
spicy memory allocator

Retained mode
is the solution that causes

the problem

An atlas is just a
spicy memory allocator

Retained mode
is the solution that causes

the problem

Can't order blocks from
large to small

Live run-time

Immediate Mode

• Write all the code to produce 1 frame

Immediate Mode

• Write all the code to produce 1 frame

• Call it again with new input

Immediate Mode

• Write all the code to produce 1 frame

• Call it again with new input

Immediate Mode

 Very simple

• Write all the code to produce 1 frame

• Call it again with new input

Immediate Mode

 Very simple

Doesn't scale

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

• Call it repeatedly with new input

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

• Call it repeatedly with new input

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

• Call it repeatedly with new input

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

• Call it repeatedly with new input

 Simple

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

• Call it repeatedly with new input

 Simple

Incremental Mode

• Write all the code to produce 1 frame

• Memoize the slow parts
= Save last input and output

• Call it repeatedly with new input

Retained

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

• Re-run subtrees selectively

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

• Re-run subtrees selectively

Complex!

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

• Re-run subtrees selectively

Complex!

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

Very Retained?

• Re-run subtrees selectively

Complex!

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

Very Retained?

• Re-run subtrees selectively

Turing complete!

Complex!

Reactive Mode

• Write all the code to produce 1 frame

• Memoize the slow parts recursively

Very Retained?

• Re-run subtrees selectively

Turing complete!
Immutable

data

!

Web / React

Command
Encoder

<App>

Web / React

Command
Encoder

<App>

Build reactive mode trees

Web / React

Command
Encoder

<App>

Build reactive mode trees

Web / React

Command
Encoder

<App>

Build reactive mode trees

Web / React

Data flows from a source into components

Command
Encoder

<App>

Build reactive mode trees

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions return child
components at run-time

Build reactive mode trees

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions return child
components at run-time

Build reactive mode trees

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions declare child
components at run-time

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions declare child
components at run-time

return (!<>
 <Red !/>
 <Orange>
 <Green !/>
 <Green foo={…} !/>
 !</Orange>
 <Purple bar={…} !/>
 <Blue !/>
!!</>)

JSX

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions declare child
components at run-time

Tree knits itself together
at runtime

return (!<>
 <Red !/>
 <Orange>
 <Green !/>
 <Green foo={…} !/>
 !</Orange>
 <Purple bar={…} !/>
 <Blue !/>
!!</>)

JSX

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions declare child
components at run-time

Tree knits itself together
at runtime

return (!<>
 <Red !/>
 <Orange>
 <Green !/>
 <Green foo={…} !/>
 !</Orange>
 <Purple bar={…} !/>
 <Blue !/>
!!</>)

JSX

The calling convention is
a recursive data structure

Web / React

Data flows from a source into components

Command
Encoder

<App>

= Functions declare child
components at run-time

Tree knits itself together
at runtime

return (!<>
 <Red !/>
 <Orange>
 <Green !/>
 <Green foo={…} !/>
 !</Orange>
 <Purple bar={…} !/>
 <Blue !/>
!!</>)

JSXreturn [
 {fn: Red},
 {fn: Orange, args: [{…
 {fn: Green},
 {fn: Green, args: […]},
 …}]},
 {fn: Purple, args: […]},
 {fn: Blue},
]

Read as

The calling convention is
a recursive data structure

Tree knits itself together
at runtime

Command
Encoder

Web / React

Tree knits itself together
at runtime

Command
Encoder

Components whose state changed are re-run

Web / React

Tree knits itself together
at runtime

Command
Encoder

Components whose state changed are re-run

Tree re-knits itself together
at runtime

Web / React

Tree knits itself together
at runtime

Command
Encoder

Components whose state changed are re-run

Tree re-knits itself together
at runtime

The deeper in the tree
the more frequently it changes

Web / React

Tree knits itself together
at runtime

Command
Encoder

Components whose state changed are re-run

Tree re-knits itself together
at runtime

The deeper in the tree
the more frequently it changes

Web / React

Memoize components to avoid
updating slow sub-trees

<div>

<nav>

<div>

<div>

<header>
Command

Encoder

Web / React

<div>

<nav>

<div>

<div>

<header>
Command

Encoder

Web / React

React proxies to native HTML

<div>

<nav>

<div>

<div>

<header>
Command

Encoder

Web / React

HTML <elements>
are special components

React proxies to native HTML

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

Web / React

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

Tree structure is also
page structure

Web / React

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

<html>

Tree structure is also
page structure

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

<html>

Tree structure is also
page structure

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

<html>

Tree structure is also
page structure

Reconciling

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

<html>

Tree structure is also
page structure

Reconciling

Feels like immediate mode

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<header>

Command
Encoder

<html>

Web / React

App structure is also
page structure

Reconciling

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<header>

Command
Encoder

<html>

Web / React

App structure is also
page structure

Reconciling

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<header>

Command
Encoder

<html>

Web / React

App structure is also
page structure

Reconciling

Contexts allow
you to make 'skip' links

<div>

<nav>

<div>

<div>

<header>

Command
Encoder

App

<header>

Command
Encoder

<html>

Web / React

App structure is also
page structure

Reconciling

Contexts allow
you to make 'skip' links

It's a directed graph with a tree for a spine

Live

Command
Encoder

App

Live

Command
Encoder

App

There is no HTML

Live

Command
Encoder

App

There is no HTML

useMemo(…)
useState(…)

useCallback(…)
useContext(…)

Only hooks

Live

Command
Encoder

App

There is no HTML

useMemo(…)
useState(…)

useCallback(…)
useContext(…)

Only hooks

Live

Command
Encoder

App

Live drives a tree just like the first

There is no HTML

useMemo(…)
useState(…)

useCallback(…)
useContext(…)

Only hooks

Command
Encoder

Live

Command
Encoder

App

Live drives a tree just like the first

There is no HTML

useMemo(…)
useState(…)

useCallback(…)
useContext(…)

Only hooks

Command
Encoder

Live

Command
Encoder

App

Live drives a tree just like the first But they don't have to match

There is no HTML

useMemo(…)
useState(…)

useCallback(…)
useContext(…)

Only hooks

Command
Encoder

Command
Encoder

Command
Encoder

Command
Encoder

How to return data without
breaking one-way data flow?

Comm
and

Comm
and

Comm
and

Comm
and

Comm
and

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Yeet

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Yeet

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Comm
and

Comm
and

Comm
and

Reverse shadow tree

Comm
and

Comm
and

Comm
and

Reverse shadow tree
Incremental
Map Reduce

Comm
and

Comm
and

Comm
and

Reverse shadow tree
Incremental
Map Reduce

Comm
and

Comm
and

Continuation

Comm
and

Reverse shadow tree
Incremental
Map Reduce

Comm
and

Comm
and

Comm
and

Comm
and

Comm
and

Comm
and

Incremental version of await

return mapReduce(
 children,
 mapper, reducer,
 (values: T) !=> …
)

Comm
and

Comm
and

Comm
and

Incremental version of await

return mapReduce(
 children,
 mapper, reducer,
 (values: T) !=> …
)

Comm
and

Comm
and

Comm
and

Incremental version of await

return gather(
 children,
 (values: T[]) !=> …
)

return mapReduce(
 children,
 mapper, reducer,
 (values: T) !=> …
)

Comm
and

Comm
and

Comm
and

Incremental version of await

Ugly continuation passing style needed
because no rewindable generators

return gather(
 children,
 (values: T[]) !=> …
)

Live effect system

Comm
and

Comm
and

Comm
and

Live effect system

Comm
and

Comm
and ...

...

Comm
and

Live effect system

Comm
and

Comm
and ...

...

Recursion

Comm
and

Live effect system

Comm
and

Comm
and ...

...

Recursion

Comm
and

Live effect system

Comm
and

Comm
and ...

...

Recursion

...

Comm
and

Live effect system

Nesting

Comm
and

Comm
and ...

...

Recursion

...

Comm
and

Live effect system

Comm
and

Comm
and ...

...

...

Comm
and

...

...

...

...

Just a spicy function call

...

...

Could hide a whole
new subtree

Just a spicy function call

Live effect system

Comm
and

Comm
and ...

...

...

Comm
and

Comm
and

Comm
and ...

...

...

Comm
and

Live effect system

1 return value

= Bottleneck

Command
Encoder

Command
Encoder

Reconciling &
Quoting

Command
Encoder

Reconciling &
Quoting

Command
Encoder

Command
Encoder

Reconciling &
Quoting

Command
Encoder

Command
Encoder

Reconciling &
Quoting

Command
Encoder

Command
Encoder

Reconciling &
Quoting

Command
Encoder

Command
Encoder

Reconciling &
Quoting

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

No cycles

...

...

+ Reductions

...

...

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

No cycles

...

...

+ Reductions

...

...

Command
Encoder

Command
Encoder

Reconciling &
Quoting

quote(children)
quote(… unquote(…) …)

No cyclesStill no cycles

Command
Encoder

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Command
Encoder

Reconciling &
Quoting

Command

...

...

Reconciling &
Quoting

Command
Encoder + Reductions

...

...

Incremental Lisp
macros

Command
Encoder

Command

...

...

Command
Encoder + Reductions

...

...

Comma
nd

Comma
nd

.

.
Comma

nd

.

.

+ Reductions

.

.

Comma
nd

Comma
nd

.

.
Comma

nd

.

.

+ Reductions

.

.

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

Constraints

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

Value dependency

..

..

..

..

+ Reductions

..

..

Value dependency

Type dependency

..

..

..

..

+ Reductions

..

..

If the type of the data
changes, you need
new everything

Value dependency

Type dependency

..

..

..

..

+ Reductions

..

..

If the type of the data
changes, you need
new everything

Value dependency

Type dependency

Everything is rewindable

..

..

..

..

+ Reductions

..

..

If the type of the data
changes, you need
new everything

Value dependency

Type dependency

 Not a problem !

Everything is rewindable

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

..

..

..

..

+ Reductions

..

..

Flaw in graph-based
programming

Doesn't allow structural reuse

..

..

..

..

+ Reductions

..

..

Flaw in graph-based
programming

Doesn't allow structural reuse

..

..

..

..

+ Reductions

..

..

Flaw in graph-based
programming

Doesn't allow structural reuse

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

 Big tree sits above

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

 Track dependencies

 Big tree sits above

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

 Track dependencies

 Big tree sits above

 Reduce and reconcile

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

 GPU dispatch at the end

 Track dependencies

 Big tree sits above

 Reduce and reconcile

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

 GPU dispatch at the end

 Track dependencies

 WebGPU glue is not effect-based

 Big tree sits above

 Reduce and reconcile

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Metaphor
or literal?

 GPU dispatch at the end

 Track dependencies

 WebGPU glue is not effect-based

 React hooks = inlined reactivity

 Big tree sits above

 Reduce and reconcile

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Data shapes the code
that generates it

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Data shapes the code
that generates it

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Data shapes the code
that consumes it

Data shapes the code
that generates it

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Data shapes the code
that consumes it

Who aligns or converts
the structure of data?

Data shapes the code
that generates it

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Data shapes the code
that consumes it

Conway's Law 2.0

Who aligns or converts
the structure of data?

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.
What's the catch?

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Immutable
data

!

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Immutable
data

!

Pass by value

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Immutable
data

!

Pass by value

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Immutable
data

!

If there is a lot
happening up here

Pass by value

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Immutable
data

!

If there is a lot
happening up here

This is changing
very often

Pass by value

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Immutable
data

!

If there is a lot
happening up here

This is changing
very often

Can't memoize

Pass by value

Mutable
data

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

If there is a lot
happening up here

Pass by mutable
reference ?

Mutable
data

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

If there is a lot
happening up here

This never gets
called again

Pass by mutable
reference ?

Mutable
data

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

If there is a lot
happening up here

This never gets
called again

Pass by mutable
reference ?

Can't continue

Mutable
data

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

If there is a lot
happening up here

This never gets
called again

Pass by mutable
reference ?

Can't continue

Requires
declarative signal()

CPU

GPU

CPU

CPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU

GPURequires
declarative signal()

CPU

GPU

CPU

CPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU Upload data to GPU

GPURequires
declarative signal()

CPU

GPU

CPU

CPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU Upload data to GPU

GPURequires
declarative signal()

CPU

GPU

CPU

CPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU Upload data to GPU

GPURequires
declarative signal()

CPU

GPU

CPU

CPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Pass handle
by value

GPU

CPU

CPU Upload data to GPU

GPURequires
declarative signal()

CPU

GPU

CPU

CPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Pass handle
by value

GPU

CPU

CPU

These handles
never change

Upload data to GPU

GPURequires
declarative signal()

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Pass handle
by value

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU

If the size of the data
changes, you need

new storage and upload

CPU
Pass handle

by value

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU Move to new buffer

If the size of the data
changes, you need

new storage and upload

CPU
Pass handle

by value

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU Move to new buffer

If the size of the data
changes, you need

new storage and upload

Only 1 handle
changes

CPU
Pass handle

by value

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU Move to new buffer

If the size of the data
changes, you need

new storage and upload

 Can usually memoize

Only 1 handle
changes

CPU
Pass handle

by value

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

[1, 2, 3, 4, 5, 6, 7]

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

[1, 2, 3, 4, 5, 6, 7]

In pure FP, this is a no-op

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

[1, 2, 3, 4, 5, 6, 7]

In pure FP, this is a no-opIn incremental FP, this is NOT a no-op

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

[1, 2, 3, 4, 5, 6, 7]

In pure FP, this is a no-opIn incremental FP, this is NOT a no-op

Same instance or different instance?

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

[1, 2, 3, 4, 5, 6, 7]

In pure FP, this is a no-opIn incremental FP, this is NOT a no-op

Determines whether output is
same instance as before

Same instance or different instance?

GPU

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

GPU

CPU

CPU
CPU

Requires
declarative signal()

[1, 2] + [3, 4, 5] + [] + [6, 7]

[1, 2, 3, 4, 5, 6, 7]

In pure FP, this is a no-opIn incremental FP, this is NOT a no-op

Determines whether output is
same instance as before

Declarative signal()
= optimize away the no-no-op

Same instance or different instance?

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Browser

Server

DB

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Browser

Server

DB

Client

Server

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Browser

Server

DB

Push vs Pull

Client

Server

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

This is just normal code
memoized

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

This is just normal code
memoized

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Incremental effect
systems are

virtual reified silicon

This is just normal code
memoized

Comm
and

Comm
and

.

.
Comm

and

.

.

+

.

.

Incremental effect
systems are

virtual reified silicon
Should this be a language?

Use.GPU

Make it an interactive app
using Live hooks

Write the typical code
to render 1 frame in WebGPU

Make it an interactive app
using Live hooks

Memoize it using the
patterns of Live

Write the typical code
to render 1 frame in WebGPU

Make it an interactive app
using Live hooks

Memoize it using the
patterns of Live

Write the typical code
to render 1 frame in WebGPU

Make it an interactive app
using Live hooks

Memoize it using the
patterns of Live

Make it an interactive app
using Live hooks

Memoize it using the
patterns of Live

Make it an interactive app
using Live hooks

Go all the way

"How do I draw a line?"

"How do I draw a line?"

"How do I draw a line?"@use-gpu/plot

"How do I draw a line?"@use-gpu/plot

"How do I draw a line?"@use-gpu/plot

2D / 3D / 4D

"How do I draw many lines?"@use-gpu/plot

"How do I draw many lines?"

Design sane APIs
for the common use cases

@use-gpu/plot

"How do I draw many lines?"

Design sane APIs
for the common use cases

Provide zero-cost
escape hatches for the rest

@use-gpu/plot

"How do I draw many lines?"

Design sane APIs
for the common use cases

Provide zero-cost
escape hatches for the rest

@use-gpu/plot

WebGPU Canvas

Event handler

WebGPU Canvas

Cube Map Loader

Cube Map Loader

Compute Shaders

Camera Controls

Camera Controls

Render Target

Camera Controls

Render Target

Forward Renderer

Camera Controls

Render Target

Forward Renderer Or <DeferredRenderer>

Camera Controls

Render Target

Forward Renderer

PBR Spheres

Or <DeferredRenderer>

Tone Map

Tone Map

Render Passes

GPU Dispatch

GPU Dispatch

HTML UI

@use-gpu/voxel

Entirely new pipeline

Reconciled

Live in React in Live

Live in React in Live
Effect-based

layout components

Effect-based
layout components

React in Live
in React in Live

React in Live
in React in Live Composition and reuse

"How do I compose shaders?"

"How do I compose shaders?"@use-gpu/shader

"How do I compose shaders?"@use-gpu/shader

Shader linker with
module system in WGSL

"How do I compose shaders?"@use-gpu/shader

Shader linker with
module system in WGSL

array[i] @link fn getValue(i)
Turn inputs into getters

"How do I compose shaders?"@use-gpu/shader

Shader linker with
module system in WGSL

Shader imports
in TypeScript

array[i] @link fn getValue(i)
Turn inputs into getters

"How do I compose shaders?"@use-gpu/shader

Shader linker with
module system in WGSL

Shader imports
in TypeScript

Bind args by handle,
reference or lambda

array[i] @link fn getValue(i)
Turn inputs into getters

"How do I compose shaders?"@use-gpu/shader

Shader linker with
module system in WGSL

Shader imports
in TypeScript

Bind args by handle,
reference or lambda

array[i] @link fn getValue(i)
Turn inputs into getters

Closures

"How do I compose shaders?"@use-gpu/shader

"How do I compose shaders?"@use-gpu/shader

Links modules

"How do I compose shaders?"@use-gpu/shader

Links modules

Aggregates structs

"How do I compose shaders?"@use-gpu/shader

Generates boilerplate and bindings

Links modules

Aggregates structs

"How do I compose shaders?"@use-gpu/shader

"How do I compose shaders?"@use-gpu/shader

So much boilerplate

"How do I compose shaders?"@use-gpu/shader

So much boilerplate

"How do I compose shaders?"@use-gpu/shader

So much boilerplate

All at run-time

"How do I compose shaders?"@use-gpu/shader

"How do I compose shaders?"@use-gpu/shader

Inspect generated
shader + bindings

Rendering with
distance fields

Lighting prototype

Lighting prototype

Lighting prototype

Lighting prototype

printf(…) rays

Lighting prototype

printf(…) rays

<LineLayer>
<PointLayer>

Lighting prototype

printf(…) rays

<LineLayer>
<PointLayer>

@link fn emitLine(…)
@link fn emitPoint(…)

Level viewer
for Dark Engine

games

Use.GPU works* today

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

ComponentsComponents

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

Because the GPU API
is in the way

ComponentsComponents

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

Because the GPU API
is in the way

ComponentsComponents

GPGPU = Dark Souls

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

Because the GPU API
is in the way

ComponentsComponents

GPGPU = Dark Souls

Only 4
equipment slots

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

Because the GPU API
is in the way

ComponentsComponents

GPGPU = Dark Souls Industry is in denial

Only 4
equipment slots

Use.GPU works* today *WebGPU support

But Use.GPU is a what if

Vertical
Slice

Because the GPU API
is in the way

ComponentsComponents

GPGPU = Dark Souls Industry is in denial

Only 4
equipment slots

Use.GPU works* today

Multi-threading
in browsers
also sucks

*WebGPU support

Incremental Effects

Hierarchy of change
ordered by frequency

DSL for the target data structure

Your entire app

acts like one big main() function

Finite and semi-static stack trace
of everything that happened

Hierarchy of change
ordered by frequency

DSL for the target data structure

Your entire app

acts like one big main() function

Finite and semi-static stack trace
of everything that happened

Hierarchy of change
ordered by frequency

DSL for the target data structure

Your entire app

acts like one big main() function

Continuations are fences
to prevent out-of-order evaluation

Finite and semi-static stack trace
of everything that happened

Hierarchy of change
ordered by frequency

DSL for the target data structure

The app structure is also a
data dependency graph

Your entire app

acts like one big main() function

Continuations are fences
to prevent out-of-order evaluation

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

Incremental Effects

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

Your entire app

acts like one big main() function

Incremental Effects

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

Your entire app

acts like one big main() function

Incremental Effects

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

DSL for the target data structure

Your entire app

acts like one big main() function

Incremental Effects

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

Hierarchy of change
ordered by granularity

DSL for the target data structure

Your entire app

acts like one big main() function

Incremental Effects

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

Hierarchy of change
ordered by granularity

DSL for the target data structure

Your entire app

acts like one big main() function

CPU code acts like a JITed GPU

Incremental Effects

Finite and semi-static stack trace
of everything that happened

Continuations are fences
to prevent out-of-order evaluation

The app structure is also a
data dependency graph

Hierarchy of change
ordered by granularity

DSL for the target data structure

Your entire app

acts like one big main() function

CPU code acts like a JITed GPU

Incremental Effects

CPU code acts like immediate mode

Words

Words

Finite and semi-static log
of everything that happened

Words

Finite and semi-static log
of everything that happened

Your entire story

acts like one big main() function

Words

Finite and semi-static log
of everything that happened

Your entire story

acts like one big main() function

Words

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

Your entire story

acts like one big main() function

Words

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

Your entire story

acts like one big main() function

DSL for the target world

Words

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

The story structure is also a
data dependency graph

Your entire story

acts like one big main() function

DSL for the target world

Words

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

The story structure is also a
data dependency graph

Your entire story

acts like one big main() function

Hierarchy of change
ordered by granularity

DSL for the target world

LLM acts like a JITed world

Words

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

The story structure is also a
data dependency graph

Your entire story

acts like one big main() function

Hierarchy of change
ordered by granularity

DSL for the target world

LLM acts like a JITed world

Words

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

The story structure is also a
data dependency graph

Your entire story

acts like one big main() function

A language is an effect system
that orders information by how often context changes

Hierarchy of change
ordered by granularity

DSL for the target world

LLM acts like a JITed world

Words

A language is an effect system
that orders information by how often context changes

Finite and semi-static log
of everything that happened

Sentences are fences
to prevent out-of-order evaluation

The story structure is also a
data dependency graph

Hierarchy of change
ordered by granularity

DSL for the target world

Your entire story

acts like one big main() function

Zipf's Law 2.0

Shapes

Shapes

Mounting components

Shapes

Mounting components

Shapes

Mounting components Reconciling trees

Shapes

Mounting components Reconciling trees

Shapes

Mounting components Reconciling trees

Reducing information

Shapes

Mounting components Reconciling trees

Reducing information

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes
Use.GPU

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes
Use.GPU "//usegpu.live

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes
Use.GPU "//usegpu.live

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes
Use.GPU "//usegpu.live

Mounting components Reconciling trees

Reducing information Quoting

Quoting

Calling functions Diffing maps

Returning values Sandboxing

Sandboxing

Shapes
Use.GPU "//usegpu.live

